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Abstract 

The formal theory of surface dislocations has been 
applied to the f.c.c.-b.c.c, interfaces defined by 
(111) F II (110)B. With the Bain correspondence between 
the two lattices, various theoretical models and experi- 
mental results on these interfaces have been analyzed. 
The results of the analysis suggest that preferred 
interface orientations can be explained on the basis that 
they are those of minimum or near-minimum Burgers- 
vector contents. This concept leads to an improved 
criterion for comparing the elastic component of 
interfacial energies. The limitations of geometrical 
models for predicting low-energy interfaces are 
discussed. 

1. Introduction 

In this paper, we describe f.c.c.-b.c.c, boundaries in 
terms of the formal geometrical theory of surface 
dislocations (Bilby, Bullough & de Grinberg, 1964), of 
which the 0-lattice theory (Bollmann, 1970) may be 
considered to be a quantized version (Christian, 1976). 
We also discuss the extent to which criteria such as 
'best fit' are successful in predicting observed interface 
orientations. Particular emphasis is given to experi- 
mental results from the copper-chromium age- 
hardening alloy system (Hall, Aaronson & Kinsman, 
1972; Weatherly, Humble & Borland, 1979) for which 
the theory of Bollmann (1974) is appropriate when the 
chromium-rich b.c.c, precipitates have a Nishiyama- 
Wasserman (N-W) orientation relationship 
(Nishiyama, 1934) with the f.c.c, matrix. We start by 
discussing the formal theory of surface dislocations 
before analyzing the interface models of Bruce & 
Jaeger (1978), Hall et al. (1972) and Rigsbee & 
Aaronson (1979a,b). 
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2. The model of a general f.c.c.-b.c.c, interface 

The Burgers vector content B of an interface between 
two phases designated by the subscripts + and - can 
be defined through the formula 

B = (~++1 - ~__1) p, (1) 

where p is a vector in the interface and S+ and 5_ are 
the deformations carrying the reference lattice, in which 
B and p are expressed in the final orientations of the (+) 
and ( - )  lattices respectively. If we choose the (+) 
lattice to be the reference lattice, which is transformed 
into the ( - )  lattice by the deformation $, the formula 
becomes 

B = (I- -  S-m) p. (2) 

If we suppose that the misfit in the interface defined by 
(2) is accommodated by a network of i parallel sets of 
dislocations of Burgers vectors b i, line vector ~i and 
spacing d l, we can rewrite (2) in the form (Sargent & 
Purdy, 1975) 

B = ~ (N,. p) b,--  (I--  S -1) p, (3) 
i 

where 

vx~, 
Ni--- 

di 

and v is a unit vector normal to the boundary. 
The form of (2) demonstrates that if p is fixed in 

length and none of the three eigenvalues of S is equal to 
unity, then the locus of all points B defined through the 
equation is the surface of an ellipsoid. The principal 
axes of the ellipsoid can be determined by application 
of Lagrange multipliers to the function 

f ( p ) =  ~ B i B  i (4) 
i 
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subject to the condition 

g(p) = 1 - Z P, Pt = 0. (5) 
i 

If we confine p to the boundary with normal v, then the 
condition 

h(p) = Y p, vi = 0 (6) 
i 

together with (5) determines the principal axes of the 
ellipse describing the net Burgers-vector content cross- 
ing all unit vectors p in v. For a given S, the interface 
with the lowest values of the principal axes of this 
ellipse can be said to be the interface with minimum net 
Burgers-vector content and therefore of best fit between 
the two lattices. 

We note, however, that (1)-(3) do not give a unique 
specification for the misfit between two phases, since 
each possible deformation S relating the (+) and ( - )  
lattices will yield a different value of B (Bilby et al., 
1964; Bollmann, 1970; Christian, 1976). Thus, to 
obtain a 'correct' dislocation description of an inter- 
face, an additional criterion is needed to select $. 
Bollmann (1970) suggests that S is chosen so that the 
determinant I I - S-l[ is as small as possible, whilst 
another criterion is to determine the least maximum 
modulus of [B[ (Bilby et al., 1964; Christian, 1976). 
However, both these criteria have their limitations 
(Christian & Crocker, 1980) and the choice of $ is 
usually made by appealing to the particular physical 
situation. For martensitic transformations, $ is ob- 
tained from an assumed lattice correspondence between 
the parent and product phases. In the case of grain 
boundaries close to coincidence-site-lattice (CSL) 
orientations, experimental observations of grain boun- 
dary dislocation networks can be explained if the 
dislocations are DSC dislocations of the nearby CSL 
with $ being a rotation matrix describing the deviation 
away from the CSL (Clarebrough & Forwood, 
1980a,b). For more general phase boundaries the con- 
cept of a near coincidence between two non-primitive 
cells M1 and M2 belonging to the two lattices has been 
used (Bonnet & Durand, 1975; Bonnet & Cousineau, 
1977). For the f.c.c.-b.c.c, interface following Bollmann 
(1974) we will use the Bain correspondence (Bain, 
1924) commonly used in the phenomenological theory 
of martensitic transformations. This may be expressed 
in matrix notation as follows: 

(BCF) -~ 1 , 

1 

where the prefix B and suffix F denote the b.c.c, and 
f.c.c, phases respectively and BCF is the corre- 

spondence matrix in the extended notation of Macken- 
zie & Bowles (1954). Thus, the unit vectors of the f.c.c. 
cell, ½[ 10I] r, ½[01 i] F and ½[ 110] r correspond to the unit 
vectors ½[ i 1 | ]n, ½[ I 11 ]g and [010In of the b.c.c, cell of 
Bollmann [Fig. 1 of Bollmann (1974)]. The deformation 
(FSF) carrying the f.c.c, lattice into the b.c.c, lattice 
may be written 

(FSF) = (FTB) (BCF), ( 7 )  

where (FTB) relates the components of any vector x 
referred to the B lattice to the components referred to 
the F lattice (Mackenzie & Bowles, 1954). We choose 
an orthonormal set of coordinates such that 

Xo [[ [ 112]r [[[ [ 10] n 

yo Ill 110b Ill0001]s (8) 

Zo II t 1111~ 11[ 110IB, 

i.e. the f.c.c, and b.c.c, phases have a N - W  orientation 
relationship. Transformation of (2) and (7) to the 
orthonormal set denoted by the subscript O defined in 
(8) leads to 

and 

(oSo )  = (OTB)(BCF)(FTO) 

B o = [ I -  (oSo) -1] Po. (9) 

Hence, for lattice parameters a n, a F of the b.c.c, and 
f.c.c, phases, we obtain 

(oSo) = a----q-s V/2 0 , 

ae 0 V/6/ 

(10) 

which is the same as equation (6) of Bollmann (1974) 
for ar/a B = 1-254. Relative rotation of the B and F 
lattices away from the N - W  orientation relationship 
can be modelled by pre-multiplying (oSo) by a rotation 
matrix R. 

3. Applications 

3.1. Epitaxial (111)fic.c.-(110) b.c.c, interfaces 

In a recent investigation of the deposition of f.c.c. 
metals on (110) b.c.c, metal substrates and of b.c.c. 
metals on (111) f.c.c, metal substrates, Bruce & Jaeger 
(1978) found that the metals epitaxed in either a N - W  
orientation relationship or in a Kurdjumov-Sachs 
(K-S) (Kurdjumov & Sachs, 1930) orientation 
relationship, depending on the ratio of the bulk atomic 
diameters of the deposit and substrate metals. They 
simulated (111) f.c.c. 11 (110) b.c.c, interfaces by taking 
nets of discs representing atoms in the two planes and 
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superimposing them in the two orientations, N - W  and 
K-S, i.e. they made moir6 models similar to those used 
by Bollmann (1970). They then explained their results 
by showing that areas where the discs in the two nets 
coincided were more elongated in the alignment 
adopted. It is a straightforward exercise to explain their 
experimental results with the methods outlined in § 2. 

If we consider the N-W orientation first, the 
principal axes of the ellipse describing the misfit 
between the f.c.c, and b.c.c, phases in the (111) 
f.c.c. II (1 lO) b.c.c, interface plane are 

and 

B~ = V/'3 along p~ = 
2 

1 a ~  
B2 = V/~ along P2 = (11) 

in the orthonormal basis in the f.c.c, lattice from 
(4)-(6), (8) and (9). We note that the net Burgers 
vector in the b.c.c, lattice is given in the orthonormal 
basis by 

Bb= SBo= [ (oSo) -  I ]  Po, (12) 

so, in general, the principal axes B~ and B~ will be 
different from B~ and B E in both magnitude and 
direction. However, the angular differences between B 1 

and B~, B 2 and B~, pl and p~, and P2 and p~ are small 
for the deformation S derived here for the range of 
lattice parameters of interest. Thus, for the N-W 
orientations, for example, B, IIB'~, BzlIB6 PIIIV, and 
p~llpl, but 

( 2  a .  ) , v / 3  ar - 1 I. 1 = 

and 

') " ,  
We will therefore only consider B1, B 2, p~ and P2 in this 
treatment. 

Equation (11) shows that the misfit between the f.c.c. 
and b.c.c, lattices can be fully relieved in a purely 
formal sense by a rectangular array of edge dis- 
locations with Burgers vectors parallel to [ l l2]e  and 
[il0]~, the spacings of the arrays being inversely 
proportional to IB~I and IB21 respectively. In par- 
ticular, for ar/an corresponding to the nets of Bruce & 
Jaeger (197 8), we obtain 

(a) av/as= 1-113 p =  1.100 IB, I =0-036 
IB I =0.213 

(b) ar/a~= 1.291 p = 0 . 9 4 9  IB~l =0.118 
IB, I = 0.087 

(c) a~/a~= 1.422 p=0 .861  IB,1=0"006 
IB I --- 0.231,  

where p = d o b.c.c./d o f.c.c., the ratio of the bulk atomic 
diameters, and is related to a~/an by p = v/3a~/v/2aF . 
Thus, in (a), the greater part of the misfit can be 
accommodated by a single array of dislocations with 
BII[il0]~ along ~ = [l12]r and, in (c), by another 
single array with BIll112] F along ~ = [il0]e.  In (b), the 
misfit is formally relieved by approximately equal 
dislocation densities in both arrays. The lozenge- 
shaped unfavorable areas, clearly apparent in the 
superimposed nets for case (b), where IB, I and IB21 are 
comparable, and less well defined for (a) and (c), have 
areas proportional to (Is, lIBel)-'. Fig. 1 shows the 
superposition of nets representing the atoms in the 
(111)~[[(11_0) s planes for ar/a s = 1.291, case (b). 
Along [1121,41[II0b, there are n = I/IB,I ~ 8.5 
f.c.c, atoms for every (n + 1) b.c.c, atoms whilst along 
[l iOb11[oo16 there are m = 1/IBd ~ 11.5 f.c.c, atoms 
for every (m - 1) b.c.c, atoms. The areas of the lozenges 
in Fig. 1 are therefore 

i.e. the area of the lozenge-shaped unfavorable regions, 
where the symbols representing the deposits and 
substrates are close enough to one another to give a 
dark region, is proportional to (IB, I I B21)-'. This result 

[1123 F II E I 1 0 " ] B  
._ , ,  9, o o o o o g q o  o o o o o p  ~ q 

m ,~- ~ o .c) c2 e t . .~  ~ e e. ~ c~ p 9 -m .e .e e m o : - o  9 c2 a ~  -~ 

o * ~  m ~ • • ~- ~ . p + i - , - q - , - c ~  ,,o .~ ® ~ o + o * 9 + q . . * o  ,~.~e e ~. o.,..p 

~+o~o ~0 ~ ~ ~ o+ o + ~ , + o ÷ o  ,o  .~ ® ~ I p + ~ + % ~ % e = % ~ o  2 

o ~ o~ ,~ . . . . .  °.o-'%'°e®.%,%Ob~*°* # ° ; o % , % * e % % ~  *°~+o ~o" 
r e  e~ ~ o - * o + o q . o  ~ .e s . e  ~ m+o+e a . o ~ o ~ o e e e e e , ~ - o , ~ O * g ~ o ~ . , o - , O  
p ~ ~ , ~ o $  ~ ~ ~ ¢ % ~ o %  ~ ~ ~. ~%.%~ D ~ ~ ~-~. ~- ~- ~-~' ,o~$ ~ ~ ~ ~ ° ' ~o~  

_ ~ ° o o  ° ~ : ~ - ~ - ~ ;  - ~ * - t ~ :  : = ' ~ ; ; ~ ' : ;  ~c~ o ~ o  o o o o ' %  b ~ d o o o o o o ~ b ~ o ' " o  o o o o '~ 'b 

Fig. 1. Superposition of nets representing atoms in (111)r l] (110)s 
planes for aF/a 8 = 1.291. The atoms in the b.c.c, planes are 
represented by circles and those in the f.c.c, planes by crosses. 
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is valid for the general case, where the principal axes 
B~, B2, P~ and P2 are irrational directions (as in the K-S 
epitaxial orientation described below). 

To obtain a K-S orientation relationship, we can 
rotate the b.c.c, lattice relative to the f.c.c, lattice by an 
angle 0 = c o s - ~ [ ( ~  + 1)/2V/3] ~ 5.26° about 
zo[ l [ l l l ]Fl [ [ l l0]  n, so making [101]F[[[ili] n and 
[l:~l]vll[li2ln. Table 1 shows values of B 1 and B 2 
describing the misfit in the ( l l l ) v [ [ ( l l 0 )  n interface 
plane along the directions p~ and P2 calculated with (2). 
The table shows that the K-S orientation nets of Bruce 
& Jaeger (1978) can also be explained by surface 
dislocation theory; for example, for av/an = 1.291 and 
p = 0.949, IBII and IBzl are 0.009 and 0.196 
respectively, with p~, the direction of best fit, being 
44.2 ° away from [i10] v, and 15.8 ° from [101IF and 
can be identified as the direction of parallel fringes in 
Fig. 7(c) of Bruce & Jaeger (1978). The direction of 
worst fit in this analysis, P2, is necessarily per- 
pendicular to p~. Thus, we can rapidly reach the same 
conclusions as Bruce & Jaeger, that areas where discs 
in the two nets coincide are more elongated in the 
adopted alignment, and to some extent justify and 
clarify their procedure with surface dislocation 
analysis, without the necessity of going through the 
procedure of superimposing nets, i.e. of producing 
moir6 models of the interfaces. 

3.2. Partially coherent flc.c.-b.c.c, boundaries 

In their study of chromium-rich b.c.c, precipitates in 
a f.c.c, matrix of a Cu-0.33 wt% Cr alloy, Hall, 
Aaronson & Kinsman (1972) observed irrational habit 
planes with orientation relationships varying from 
N-W to K-S. They found that most of their habit 
planes could be explained by modeling them as 
sequences of steps whose broad faces were formed by 

Table 1. Kurdjumov-Sachs orientation relationship 

ar, a B are the lattice parameters of the f.c.c, and b.c.c, phases, 
respectively; p = d o b.c.c./d 0 f.c.c., the ratio of the bulk atomic 
diameters; B~,B 2 are the principal axes of the ellipse describing the 
misfit between the two lattices in the ( l l l )F I ] ( l l0 )  B interface 
plane, referred to the orthonormal basis O; P~,P2 are the unit 
vectors related to B~ and B2 through equation (9) in the text. 

at./a8 P BI B2 Pl P2 

0.05958 --0.07672 0.97278 0.23171 
1.113 1.100 0.02012 0.22715 -0 .23171  0.97278 

0.00000 0.00000 0- 00000 0.00000 

1.291 0.949 
0.00550 -0 .15276  --0.69733 0.71675 
0.00680 0.12347 0.71675 0.69733 
0.00000 0.00000 0.00000 0.00000 

1.422 0.861 
-0 .01269  -0 .25262  -0 .40126  0.91597 
-0 .03818  0.08400 0.91597 0.40126 

0. 00000 0. 00000 0. 00000 0-00000 

(111)F[ [ (110) B. The area of each step was restricted by 
the requirement that it was a region of good fit between 
the lattices. This model has been developed further by 
Rigsbee & Aaronson (1979a) for a wide range of 
aF/a n. It is again a straightforward exercise to obtain 
the results of their models with surface dislocation 
theory and demonstrate that their predicted interfaces 
are those with minimum net Burgers-vector content for 
the Bain correspondence between the f.c.c, and b.c.c. 
lattices and a given orientation relationship. 

Table 2 shows the principal axes of the B ellipsoid 
describing the misfit between the two lattices and the 
corresponding directions p defined in (2), in the f.c.c. 
reference lattice for aF/a n = 1.253 and 0, the angular 
rotation away from N-W, having values of 0, 2 and 
5.26 °. Thus, for the N - W  orientation, the interface 
containing Pl and P2 is that with the minimum net 
Burgers-vector content, i.e. (0.469, 0.469, 0.748) F, 
which is 1.8 ° away from (223) r, 1.2 ° away from 
(335)r and 13-2 ° away from (111) E. Similarly for the 
K-S orientation, the interface with the minimum net 
Burgers-vector content is (0.648, 0.229, 0.726)F, 
which is 22.2 ° away from (111) F and 3.16 ° away from 
(313)~-. Inspection of Fig. 11 of Rigsbee & Aaronson 
(1979a) shows that these interfaces are the O-B 
interfaces of Rigsbee & Aaronson, which give better 
agreement with the experimental results of Hall, 
Aaronson & Kinsman (1972) than the Rigsbee & 
Aaronson O-A interfaces, which will have far greater 
misfits to accommodate than the O-B interfaces. The 
same comment also applies to the interfaces with 
triatomic structural ledges stepping in the direction 
opposite to the ones producing the O-A and O-B 
interfaces; in fact, these latter interfaces will in general 
have a higher dislocation content than the 
( l l l )~[[( l l0)B interfaces for a given orientation 
relationship. For example, in the N - W  orientation, the 
interface predicted with the inverse rotated triatomic 
ledges is (0.655, 0.655, 0.376) F which has values of 
0.114 and 0.166 for the moduli of the principal axes of 
the B ellipsoid, compared with 0.085 and 0.114 for 
(111)FII (ll0)n and 0.005 and 0.114 for the interface 
with minimum net Burgers-vector content. 

The experimental results of Rigsbee & Aaronson 
(1979b) suggest that the observed interfaces are indeed 
near those of minimum net Burgers-vector content, but 
have the deviation away from the ( l l l ) r [ [ ( l l 0 )  n 
interface orientation made by structural triatomic 
ledges, with the atomic habit plane remaining 
(1 ll)vll(110)~. That the dislocations in the 
( l l l ) v [ [ ( l l 0 )  s interfaces are observed to have a 
Burgers vector lying in the interface is of course 
consistent with the surface dislocation analysis from 
inspection of equation (10) and the required form of 
any rotation matrix FI to keep ( l l l )F [ [ ( l l 0 )  n. These 
dislocations are sessile with respect to glide out of the 
interface. 
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Table 2. Principal axes of  the B ellipsoid and the corresponding p vectors for ar/a B = 1.253 in the basis of 
the fc.c.  phase 

~(°) BI B2 B3 Pl P2 P3 IBI I , IB211B3  I 

0.00317 -0.08061 0.13873 -0.52926 -0.70711 0.46892 0-00528 
0 (N-W) 0.00317 0.08061 0.13873 -0.52926 0.70711 0.46892 0-11400 

0.00278 0.00000 -0.31637 0.66315 0.00000 0.74848 0.37227 

5.26 (K-S) 

0.00259 0.08236 0.15407 --0.67987 0.48803 0.54736 0.00447 
0.00278 -0.08288 0.12500 0.31668 --0.86860 0.38111 0.11707 
0.00235 0.00733 --0.31768 --0.66143 0.08577 0.74509 0.37455 

0.00035 0.09130 0.18229 --0.75293 0.11370 0.64820 0.00062 
0.00040 --0.09609 0.10600 0.05062 --0.97204 0.22930 0.13403 
0.00032 0.01985 -0.32528 0.65615 0.20546 0.72612 0.38765 

3.3. Growth axis directions in Cu-Cr  

In a detailed study of precipitation of a chromium- 
rich b.c.c, phase in the f.c.c, matrix of a Cu-0-55 wt% 
Cr alloy, Weatherly, Humble & Borland (1979) found 
that the orientation relationship between their needle 
precipitates and f.c.c, matrix was within +0.5 o of K-S. 

The predominant growth direction lay 7-9 o from the 
[0J. 1] F pole on the (111) F great circle, the nearest 
rational direction being either [1561 r or [i?,7]F, 
corresponding to [334] n. The strain-field contrast 
effects around the needle were shown to have the same 
character as that of a dislocation dipole, to a first 
approximation, with the displacement vector of [1541v 
and the Burgers vector associated with the dipole b = 
][ 154] F, for a needle axis direction of [615]~. 

Table 3 shows the application of surface dislocation 
analysis to this problem for aF/a s = 1.253 and for 
orientations of K-S and +0.25 ° away from K-S. 
Changing aF/a B to 1.252 or 1.254 does not signifi- 
cantly change the results of the calculations, which are, 
however, sensitive to angular changes within the quoted 
experimental error of Weatherly et al. (1979). This 
analysis clearly suggests that the growth axis direction 
of the chromium-rich needles is, as suggested (Weatherly 
et al.), to within the quoted error of +2 ° in the 
stereographic analysis, the direction of best fit between 
the two lattices in the (111)~ I1(110)B plane. Further- 
more, the direction of the Burgers vector of the 
dislocations crossing this direction is within 1-2 ° of the 
Burgers vector deduced from the analysis of Weatherly 
et al. for the exact K-S orientation and +0.25 ° away 
from K-S;  the magnitude of B is very sensitive to the 
orientation relationship. For the K-S orientation, the 
net Burgers vector along the chromium-rich needle 
considered by Weatherly et al. would be about b = 
5/2[ 154], and the strain field contrast could arise from 
the very slight mismatch along the needle axis. 

As Table 2 shows, the direction of best fit irrespec- 
tive of plane for the K-S orientation is also very close 
to the experimentally determined growth axis (3.3 ° 
away from [716]r) and the fit along this direction is 
nearly perfect. In this case, the strain contrast would 

Table 3. Directions of  best fit Pl and corresponding 
Burgers-vector contents B 1 in the (111)vii(110) B plane 
at and near the K - S  orientation relationship in the 

basis of the fc.c.  phase for av/a B = 1.253 

(o) Pl Bl 

0.74911 0.00121 
5.26 --0.09327 --0-00562 

(K-S) -0.65584 0.00441 

5.0 
0.74891 0.00192 

-0.09277 --0.00911 
--0.65614 0-00719 

0.74919 0-00055 
5.5 --0.09346 --0.00250 

-0.65573 0-00195 

Note: At the K - S  orientation relationship I10ilFIIlililB and 
112 I IFII[ 1 i:21B for the case in the above table. 

arise from the misfit in the plane of the particle cross 
section and the displacements B will lie in the (111) r 
plane to within a few degrees for all directions in this 
plane. There will therefore necessarily be a direction in 
the plane of cross section along which B is approxi- 
mately 11[134]F, as there will be equally for the case 
where the growth axis is assumed to lie in the 
(111)FII(110)B plane above, from the form of $. This is 
consistent with the analysis of Weatherly et al. (1979). 
However, since the misfit in the plane of cross section is 
necessarily formally fully relieved by at least two arrays 
of dislocations, as in the two-consecutive-shears model 
of Kurdjumov & Sachs (1930), the limitations of 
associating a dislocation dipole character with these 
arrays have to be recognised (Weatherly et al., 1979). 

4. Discussion 

4.1. Geometrical predictions of  phase boundary 
energies 

The results of the surface dislocation analysis 
presented here suggest that the concept of mini- 
mization of the net Burgers-vector content can be 
usefully applied to f.c.c.-b.c.c, interfaces to determine 
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possible favored interface planes, orientation relation- 
ships or growth axes. However, it is important to 
recognize that the surface dislocation model, as well as 
other geometric models, is at best semi-quantitative in 
terms of predicting likely interface planes and inter- 
facial structure (Van der Merwe, 1974). No account is 
taken of chemical contributions to the interfacial 
energy and the correlation between a small value of[B[ 
and a small elastic energy depends on the physical 
reality of the dislocations which are postulated only 
mathematically in the surface dislocation analysis. In 
spite of these limitations it is still pertinent to compare 
our analysis with other geometrical analyses which 
have been suggested as a guide to boundary energies 
(Bollmann, 1970; Bollmann & Nissen, 1968; Ecob & 
Ralph, 1980; Perio, Bacmann, Suery & Eberhardt, 
1977). 

In their study of an exsolved alkali feldspar, 
Bollmann & Nissen (1968) suggested a parameter P = 
~'i (b~/d{),  where b i is the magnitude of the Burgers 
vector of the interracial dislocations and d i the spacing 
between the dislocations constituting the ith array, as a 
guide to boundary energies. This parameter has been 
applied to phase transformations in other systems 
(Ecob & Ralph, 1980; Perio et al., 1977; Plichta & 
Aaronson, 1980) including the f.c.c.-b.c.c, system. It 
has recently been suggested (Ecob & Ralph, 1980), by 
considering the homophase boundary between MoO a 
smoke crystals, treated both theoretically and experi- 
mentally by Matthews (1974, 1976), that a parameter 
R = ~ i ) ( b i d j / d i d j )  1/2 is preferable to P. When the 
parameters P and R are applied to the f.c.c.-b.c.c. 
system in the N-W orientation, the parameter P 
predicts the most favorable interface as being approxi- 
mately (223) F, whereas R predicts (0.74, 0.10, 0.66) r 
(Ecob & Ralph, 1980) for the same sets of dislocations 
relieving the formal interfacial Burgers-vector content. 
The parameter P therefore predicts the most favorable 
interface as being that with the minimum net Burgers- 
vector content for the N-W orientation, unlike the R 
parameter. Since experimental evidence (Hall et al., 
1972; Rigsbee & Aaronson, 1979b) tends to suggest 
that (223) r is a possible habit plane for the N-W 
orientation, it may be concluded that R is not 
necessarily any more useful than P, its drawback being 
that it will always be dominated by small d~, i.e. finely 
spaced dislocation arrays. 

Another criterion for an optimum boundary has 
been that det(I - S -~) = 0 (Perio et al., 1977). 
Physically, this happens when there is perfect matching 
along at least one direction common to both crystals, 
the analogue of the invariant line in the pheno- 
menological theory of martensitic transformations. 
Since, for any matrix A, det A = I-Ii 2i, where 2 i is the 
ith eigenvalue, mod {det (I - S-1)} is the product of the 
lengths of the principal axes of the ellipsoid describing 
the locus of all points B = (I - S -1) p for unit vectors p. 

This follows from consideration of (4) and the 
properties of matrices. If we define A = (I - S-1), then 
the lengths of the principal axes of the B ellipsoid are 
the square roots of the moduli of the eigenvalues gl, g2 
and f13 of the matrix AA. The result quoted follows, 
since det AA = (det A)(det A) = (I-Ii 21) 2. The optimum 
interface for the case when det(I - S -I) = 0 is thus the 
interface containing the direction of perfect matching 
and the direction perpendicular to it of best fit. 
However, this criterion and the more general one of the 
optimum interface being that with minimum net 
Burgers-vector content suggested here both necessarily 
fail to distinguish between the energies of the two 
possible dislocation descriptions of the MoO 3 interfaces 
and will be dominated by very coarsely spaced dis- 
location arrays if we consider the product [glg2[ 1/2, 
(i l l '  /'/2' <(/"/3) only. 

We therefore conclude that none of these criteria 
have general applicability in indicating relative boun- 
dary energies, since the P criterion will be dominated by 
small di, whereas the det(I - S -l) = 0 criterion will be 
dominated by large d t. Instead, we suggest a param- 
eter based on the values of the principal axes of the 
ellipse describing the Burgers-vector content of a 
particular interface. Let the principal axes be B~ and B2 
crossing perpendicular vectors Pl and P2 in the interface 
and let B 1 = b l / d l  and B 2 = b 2 / d  2, where b 1 and b 2 a r e  

the individual Burgers vectors of dislocations in arrays 
of spacings d 1 and d E, respectively. If we take the 
energy per unit length of these arrays as proportional to 

1--1n 
di 

by appealing to the Volterra-type dislocation analysis 
of Brooks (1952), then the energy per unit area will be 
of the order 

F =  [BI[ + [B2[-  [BI] ln [B~[-  [B2I ln[B2[, (12) 

further assuming [bl[ ~ Ib2[ and neglecting any 
interaction terms. The interface with minimum Burgers- 
vector content will therefore be also that of minimum F 
in this model. This equation, when used for the 
(111)vii(110)n epitaxial interfaces of Bruce & Jaeger 
(1978), yields the same conclusions as the criterion of 
Bruce & Jaeger but is influenced, rather than 
dominated, by the Burgers-vector content along the 
direction of best fit. 

For the case of MoO a crystals, B1 and B E have 
magnitudes E l -  ~01 and ( f  + ~o) for a rotation of ~0 rad 
away from epitaxy where f =  2(a o - bo) / (a  o + bo) and 
where a o and b o are the lattice parameters of the a and 
b axes of the orthorhombic crystals (Matthews, 1974). 
Equation (12) then suggests that the energy per unit 
area of the (001) interface at ~0 will be of the order 

F = ( f  + tp){1 - l n ( f  + ~0)} 

+ I f - -  ~0[ {1 -- In I f - -  ~ol}. (13) 
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In particular, when ¢ = 0 and ¢ = +f ,  F has values 

F o = 2f(1 - In f )  

F_+: = 2f(1 - In 2f) ,  

and since f < 1, F 0 > F+:. The parameter F suggests 
that the orientation ¢p = +f iN energetically favorable 
(for f - -  0.07, F:/F o ~ 0.8), which is consistent with the 
experimental evidence (Matthews, 1976). However, this 
parameter does not differentiate between the energies of 
the various possible dislocation geometries for a given 
value of ~0. 

The preceding discussion has shown that the surface 
dislocation approach provides a quantitative measure 
of the misfit in an interface. In turn the lattice 
misorientations and interface plane orientations which 
correspond to minimum misfit can be calculated 
knowing only the appropriate lattice parameters. The 
misfit is expressed as a Burgers-vector density. How- 
ever, nothing can be said explicitly about the structure 
of the interfaces concerned without knowledge in 
addition to that of lattice parameters and other 
crystallographic variables. As yet there are generally 
insurmountable difficulties in proceeding from a know- 
ledge of Burgers-vector density to an absolute estimate 
of the elastic contribution to the interfacial energy and 
an explicit description of interface structure except for 
the case of low-angle boundaries. 

It is necessary, for example, to know more about the 
occurrence of stable interphase boundaries analogous 
to special grain boundaries and allowed Burgers vectors 
and to take account of the difference in elastic prop- 
erties of the two phases. It is expected that high- 
resolution transmission electron microscopy and com- 
puter modeling will be valuable in these areas. However, 
as a means of comparing the energies of interfaces 
which are similar with respect to elastic and chemical 
properties and also allowed Burgers vectors, the surface 
dislocation approach is very successful; this is evi- 
denced by the breadth of experimental data which can 
be rationalized. No account is taken of the influence 
of kinetic factors which, for example in the case of 
epitaxial boundaries, results in the incorporation of 
dislocations which are not the most efficient in 
accommodating misfit. Similarly, modification of inter- 
facial energy by segregation is neglected. 

5. Summary 

Experimental results and theoretical models of the 
structure and orientations of f.c.c.-b.c.c, interfaces 
have been analyzed with formal surface dislocation 
theory. The analyses suggest that the preferred inter- 
face orientations are those of minimum or close to 
minimum Burgers-vector contents for the Bain corre- 
spondence between the two phases. A simple semi- 
quantitative model has been suggested to link this 

concept with parameters used as guides to interfacial 
energies. 
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